

# Faculty of: Science & Life Sciences Course: Bachelor of Science (Physics) Semester: I Subject Code: PHM202-1C Subject Name: Mechanics-II

| S | Teaching<br>hours/<br>Week<br>Credio |                  |                | Credi  | Evaluation Scheme/ Semester<br>Theory Tutorial / Practical |   |   |             |                                                                 |                                 |                 |                       |           |              |           |              |     |
|---|--------------------------------------|------------------|----------------|--------|------------------------------------------------------------|---|---|-------------|-----------------------------------------------------------------|---------------------------------|-----------------|-----------------------|-----------|--------------|-----------|--------------|-----|
| N | Categor<br>y                         | Subjec<br>t Code | Subject Name   | T<br>h | Tu                                                         |   | t | t<br>Points | Continuous and<br>S Comprehensive<br>Evaluation Exams Assessmen |                                 | ernal<br>ssment | End Semester<br>Exams |           | Total        |           |              |     |
|   |                                      |                  |                |        |                                                            |   |   |             | Ma<br>rks                                                       | Marks                           | Mar<br>ks       | Duratio<br>n          | Mark<br>s | Duratio<br>n | Mark<br>s | Duratio<br>n |     |
| 2 | MAJOR-<br>2                          | PHM2<br>02-1C    | Mechanics - II | 3      | -                                                          | 2 | 5 | 4           | 10<br>10<br>05                                                  | Assignment<br>MCQ<br>Attendance | 50              | 2                     | 25        | 1            | -         | -            | 100 |

### AIM :

- Aware students of the history of physics and its scope.
- Acquaint the basic concept of physics as a subject.
- Basic concepts related to classical mechanics.
- Learn laboratory skills for handling instruments.

## **COURSE CONTENTS**

### **Course Outline for Theory**

| UNIT | COURSE CONTENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |  |  |  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|
| I    | <ul> <li>Wave Motion</li> <li>Introduction, Types of waves, difference between Transverse and Longitudinal waves, Transverse waves on a string, Travelling and standing waves on a string, Normal Modes of a string, Melde's experiment, Group velocity, Phase velocity, Plane waves, Spherical waves, Wave intensity, Examples.</li> <li>Fluid Motion</li> <li>Kinematics of Moving Fluids: Poiseuille's Equation for Flow of a Liquid through a Capillary Tube.</li> </ul>            | 15 |  |  |  |
| II   | <ul> <li>Oscillations</li> <li>SHM: Simple Harmonic Oscillations. Differential equation of SHM and its solution. Kinetic energy, potential energy, total energy and their time-average values. Damped oscillation. Forced oscillations: Transient and steady states; Resonance, sharpness of resonance; power dissipation and Quality Factor.</li> <li>Non-Inertial Systems</li> <li>Non-inertial frames and fictitious forces. Uniformly rotating frame. Laws of Physics in</li> </ul> | 15 |  |  |  |

|     | rotating coordinate systems. Centrifugal force. Coriolis force and its applications.<br>Components of Velocity and Acceleration in Cylindrical and Spherical Coordinate Systems. |    |  |  |  |  |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|--|
|     | Special Theory of Relativity                                                                                                                                                     |    |  |  |  |  |  |
|     | Michelson-Morley Experiment and its outcome. Postulates of Special Theory of                                                                                                     |    |  |  |  |  |  |
|     | Relativity. Lorentz Transformations. Simultaneity and order of events. Lorentz                                                                                                   |    |  |  |  |  |  |
| III | contraction. Time dilation. Relativistic transformation of velocity, frequency and                                                                                               |    |  |  |  |  |  |
| 111 | wave number. Relativistic addition of velocities. Variation of mass with velocity.                                                                                               | 15 |  |  |  |  |  |
|     | Massless Particles. Mass-energy Equivalence. Relativistic Doppler effect.                                                                                                        |    |  |  |  |  |  |
|     | Relativistic Kinematics. Transformation of Energy and Momentum. Energy-                                                                                                          |    |  |  |  |  |  |
|     | Momentum Four Vector.                                                                                                                                                            |    |  |  |  |  |  |

## **Course Outline for Practical**

| Sr.                                              | Course Contents                                                                            |  |  |  |  |  |  |
|--------------------------------------------------|--------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| No.                                              |                                                                                            |  |  |  |  |  |  |
| 1                                                | =                                                                                          |  |  |  |  |  |  |
| Capacitances, and (e) Checking electrical fuses. |                                                                                            |  |  |  |  |  |  |
| 2                                                | To study Melde's experiment.                                                               |  |  |  |  |  |  |
| 3                                                | Verify Poiseuille's Law                                                                    |  |  |  |  |  |  |
| 4                                                | To study the characteristic of CE transistor.                                              |  |  |  |  |  |  |
| 5                                                | To determine the frequency of an electrically maintained tuning fork by Melde's experiment |  |  |  |  |  |  |
|                                                  | and to verify $\lambda^2$ -T law.                                                          |  |  |  |  |  |  |
| 6                                                | To study the PN junction diode characteristic and calculate resistance. And to study LE    |  |  |  |  |  |  |
|                                                  | Characteristic.                                                                            |  |  |  |  |  |  |
| 7                                                | To study the PN junction diode as a half wave/ Full wave and Bridge rectifier.             |  |  |  |  |  |  |
| 8                                                | To study the V-I characteristic of Zener diode.                                            |  |  |  |  |  |  |
| 9                                                | To study the characteristic of a Photo diode.                                              |  |  |  |  |  |  |
| 10                                               | To study Zener diode as a voltage regulator.                                               |  |  |  |  |  |  |
|                                                  | Total Hours - 30                                                                           |  |  |  |  |  |  |

### **TEACHING METHODOLOGY:**

- Conventional method (classroom blackboard teaching)
- ICT Techniques+
- Teaching through the classroom, laboratory work
- Variety of learning styles and tools (PowerPoint presentations, audio-visual resources, e-resources, seminars, workshops, models)
- Teaching through laboratory work

## **LEARNING OUTCOME:**

After the successful completion of the course, students will be able to have knowledge about wave motion, Melde's Experiment, oscillations, Non-inertial systems, basics of fluids and special theory of relativity.

#### Arrangement of lectures duration and practical session as per defined credit numbers:

| Units                              |          | Duration<br>n Hrs.) | С      | ation of<br>redits<br>1 Numbers) | Total<br>Lecture<br>Duration | Credit<br>Calculation |
|------------------------------------|----------|---------------------|--------|----------------------------------|------------------------------|-----------------------|
|                                    | Theory   | Practical           | Theory | Practical                        | Theory+<br>Practical         | Theory+<br>Practical  |
| <b>Unit – 1</b><br><b>Unit – 2</b> | 15<br>15 | 30                  | 3      | 1                                | 45 + 30                      | 3                     |
| Unit – 3                           | 15       | 20                  | 2      | 1                                | 75                           | 1                     |
| TOTAL                              | 45       | 30                  | 3      | 1                                | 75                           | 1                     |

#### Evaluation

| Theory Marks | Practical Marks | Total Marks |  |  |
|--------------|-----------------|-------------|--|--|
| 75           | 25              | 100         |  |  |

#### **REFERENCE BOOKS:**

- 1. 'B. Sc. Practical Physics', C. L. Arora, S. Chand and Company Ltd.
- 2. 'Advanced Practical Physics', M. S. Chauhan and S. P. Sing, Pragati Prakashan.
- 3. 'Experimental Physics', University Granth Nirman Board, (Gujarati Medium).
- 4. 'Physics through experiments Vol. I & II', B. Saraf et al., Vikas Publishing House.
- 5. 'Advanced Practical Physics', S. L. Gupta and V. Kumar, Pragati Prakashan.
- 6. 'An advanced course in practical Physics', **D. Chattopadhyay and P. C. Rakshit**, New Central Book Agency Pvt. Ltd.
- 7. 'Electronic Laboratory Primer', Poorna Chandra and Sasikala, S. Chand and Company Ltd.
- 8. 'Advanced Practical Physics for Students', B. L. Wosnop and H. T. Flint, Asia Publishing House.
- 9. 'Advanced Level Physics Practicals', Michael Nelson and Jon M. Ogborn, 4<sup>th</sup> Ed., *Heinemann Educational Publishers*.
- 10. 'Engineering Practical Physics', S. Panigrahi and B. Mallick, Cengage Learning India Pvt. Ltd.
- 11. 'A Text Book of Practical Physics', Indu Prakash and Ramakrishna, 11th Ed., Kitab Mahal.
- 12. 'A Laboratory Manual of Physics for Undergraduate Classes', D. P. Khandelwal, Vani Publication.
- 13. 'Basic Electronics: A Text Lab Manual, P. B. Zbar, A. P. Malvino and M. A. Miller, McGraw Hill.